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ABSTRACT 

 The 21st century is experiencing an incredible growth of science, including 

nanotechnology. The rapid advancement of this new science and its applications of 

interest required new, challenging and physically sound ways to design and predict 

productivity. A predominantly direct and intelligible approach to modeling is the 

molecular dynamics method (Leach, 1996), in which an acceptable inter atomic 

potential is chosen to reproduce the interaction between atoms and then integrate the 

classical equations of motion with suitable boundary conditions.  

 A computer model of a two-dimensional gas of non-polar molecules has been 

constructed, the pair interaction between which is given by the Lennard-Jones 

potential. The model is formulated within the framework of the molecular dynamics 

method, which provides for the direct numerical solution of microscopic equations 

of motion of interacting particles. The greatest interest is not the trajectories 

themselves, but the thermodynamic macro-characteristics of the system under study, 

which are calculated because of their statistical averaging.  

 This paper presents a brief summary of key elements indispensable for 

performing molecular dynamics modeling, with a peculiar focus on macro molecular 

systems.  

 We consider the shape of the intermolecular potential for molecules consisting 

of atoms and non-spherical sub units, giving examples of how to calculate forces 

and moments. We will also outline some molecular dynamic algorithms currently. 

Finally, we briefly refer to determinants, some affect the size of the systems and the 

length of the runs, which are valuable for calculating statistical properties.  

 We carry our computer simulations in the hope of evaluating the properties of 

molecular assemblies in terms of their structure and microscopic interactions 

between them. This serves as an addition to the usual experiments, giving us 

something new to learn, something that cannot be demonstrated by other methods.  
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АҢДАТПА 

 XXI ғасыр ғылым, соның ішінде, нанотехнологияның, қарқынды даму 

кезеңін бастан кешіруде. Бұл жаңа ғылымның лезде дамуы – оның тиімділігін 

жобалау мен болжау үшін түрлі, жаңа, күрделі және физикалық жолдарды 

талап етті. Атомдар арасындағы әсерлесуді сипаттайтын, қолайлы, 

атомаралық потенциалды таңдап, сәйкес шекаралық шарттар қолдана отырып, 

классикалық қозғалыс теңдеуін интегралдайтын тура және түсінікті модельдеу 

тәсілі – молекулалық динамика (Leach, 1996) әдісі болып табылады.  

 Жұптар арасындағы әсері, Леннард-Джонс потенциалы арқылы берілген 

екі өлшемді газдың полярлы емес молекулалары үшін компьютерлік модель 

құрастырылды. Өзара әрекеттесуші бөлшектердің қозғалысы жөніндегі 

микроскопиялық теңдеудің тура сандық шешімін қарастыратын бұл модель – 

молекулалық динамика әдісі негізінде құрылды. Осыған қарамастан, 

зерттелініп отырған жүйе үшін аса жоғары қызығушылықты: траекторияның 

өзі ғана емес, сонымен қатар, оларды есептеу нәтижесінде алынған 

статистикалық орташаланған термодинамикалық макро-сипаттамалары 

тудыруда.   

 Бұл жұмыста макромолекулалық жүйеге бағытталған, молекулалық 

динамика әдісін модельдеуді іске асыру үшін қажетті болып табылатын 

маңызды элементтердің қысқаша сипаттамалары берілген.   

 Күштер және моменттерді есептеудің мысалдарын келтіре отырып, 

бейсфералық суббірліктен және атомдардан тұратын молекула үшін 

молекулааралық потенциалдың пішінін қарастырдық. Сонымен қатар, қазіргі 

таңдағы кейбір молекулалық динамика алгоритмдері туралы сипаттайтын 

боламыз. Статистикалық жүйенің қасиеттерін есептеуде жүйенің өлшеміне 

және айналым санына әсер ететін детерминанттарға қысқаша сілтеме 

жасаймыз. 

 Сондай-ақ, молекула жиынтығының қасиеттерін бағалау үшін олардың 

арасындағы құрылымдық және микроскопиялық әсерлесуді анықтау 

мақсатында компьютерлік модельдеу құрастырдық. Бұл кәдімгі тәжірбиелік 

жұмыстар үшін алынған, яғни басқа тәсілдерді қолдану арқылы анықталмаған 

жаңа ақпараттарды білуге мүмкіндік береді және тәжірибелік жұмыстарға 

үлкен үлес болып табылады. 
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АННОТАЦИЯ 

 XXI век испытывает невероятный рост науки, в том числе, 

нанотехнологии. Быстрое продвижение этой новоприобретенной науки и ее 

интересующих применений потребовало новых, непростых и физически 

обоснованных путей для проектирования и прогнозирования продуктивности. 

Преимущественно, прямым и вразумительным подходом к моделированию 

является метод молекулярной динамики (Leach, 1996), в котором выбирают 

приемлемый межатомный потенциал для воспроизведения взаимодействия 

между атомами, а затем, интегрируют классические уравнения движения с 

подходящими граничными условиями. 

 Построена компьютерная модель двумерного газа неполярных молекул, 

парное взаимодействие между которыми задаётся потенциалом Леннард-

Джонса. Модель сформулирована в рамках метода молекулярной динамики, 

предусматривающего прямое численное решение микроскопических 

уравнений движения взаимодействующих частиц. При этом наибольший 

интерес представляют не сами траектории, а вычисляемые в результате их 

статистического усреднения термодинамические макро-характеристики 

изучаемой системы. 

 В этой работе дается краткое изложение ключевых элементов, 

незаменимых для выполнения моделирования молекулярной динамики, со 

своеобразным акцентом на макромолекулярные системы.  

 Мы рассматриваем форму межмолекулярного потенциала для молекул, 

состоящих из атомов и несферических субъединиц, приводя примеры того, как 

рассчитать силы и моменты. Мы также изложим некоторые из алгоритмов 

молекулярной динамики. Наконец, мы кратко ссылаемся на детерминанты, 

некоторые влияют на размер систем и длину прогонов, которые ценны для 

расчета статистических свойств.  

 Мы осуществляем компьютерное моделирование в надежде оценить 

свойства сборок молекул с точки зрения их структуры и микроскопических 

взаимодействий между ними. Это служит прибавлением к обычным 

экспериментам, предоставляя нам узнать что-то новое, то, что не может быть 

продемонстрировано другими приемами.  
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INTRODUCTION 

 Computer experiments represent the ultimate leading function in science. In a 

specific physical experiment, the characteristics of the system under study are 

recorded and the results are formulated in numerical form. In concept, the system 

model is based simply in the form of a collective of mathematical equations. Next, 

the susceptibility of the model is controlled to state the behavior of the system on a 

few conceived variations of the implementation of the model, rather ordinary, in 

order to allow fixing the solution of the equations. In most cases, this implies a 

significant amount of changes in order to eliminate all the difficulties connected with 

the tasks of a specific sphere and to fulfill the task being calculated. 

 Computer modeling sometimes appears as a theory, and sometimes as an 

experiment. On the one hand, we are dealing with models, and not with a “real 

object”, and this gives the right to systematize computer simulation like a theoretical 

method. On the other hand, the operation of proving the validity of a model in 

computer simulation strongly resembles an experiment: we turn on the calculations 

and then analyze the answers in a significant degree in the same way as experimental 

physicists do. How we are obliged to classify computer simulations, there is no 

definite answer to this question. However, there is some meaningful reflection. One 

way to understand the behavior of a classical many particle system is to simulate the 

trajectory of each particle. This approach, known as molecular dynamics, has been 

applied to systems of up to 109 particles and has given us much insight into a variety 

of systems in which the particles obey the laws of classical dynamics. 

 A calculation of the trajectories of many particles would not be very useful 

unless we know the right questions to ask. Saving these trajectories would quickly 

fill up any storage medium, and we do not usually care about the trajectory of any 

particular particle. What are the useful quantities needed to describe these many 

particle systems? What are the essential characteristics and regularities they exhibit? 

Questions such as these are addressed by statistical mechanics, and some ideas of 

statistical mechanics are discussed in this chapter. However, the only background 

needed for this chapter is a knowledge of Newton’s laws of motion. 

 In fact, any theoretical study of a difficult event traditionally rests on the 

reduction path: a complex system is simplified to a collection of much natural 

subsystems that can be explored using solvable models. When we see computer 

modeling as a primitive practical tool for “proving and testing” a model in situations 

that are extremely difficult for analytical discussion, we tacitly imply that the model 

shows that “theoretical level” on which interest is concentrated. 

 Nevertheless, the main thing to know that modeling may be of more 

significant and remarkable significance. We can analyze it not as a benefit of the 

reduction approach, but up to a certain stage, as an alternative to it. Simulation 

increases the limit of difficulty, which distinguishes between “solvable” and 

“intractable” models. We can use this threshold elevation in our horizons and 

advance to an unusual level of complexity in our representation of physical systems. 

Due to the potentialities of computer modeling, we can deal with incomparably more 

complex models, compared with those that were practiced in the past. This gives us 
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an auxiliary degree of freedom for studies and shows the latest features. 

 As one of the cases of this point of view, the problem of inter atomic potentials 

can be thrown. In the past, inter atomic interactions were investigated using two-

particle potentials with an elementary analytical form, Morse or Lennard-

Jones species. Today, the most reliable potentials encompass multiparticle terms, 

which are determined totally from first glances. These new potentials could not have 

arisen without modeling; similarly, computer modeling is not only a link between 

experiment and theory, it is also a significant tool for achieving growth in newly 

acquired industries. 
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1 Statistical Thermodynamics 

 Thermodynamics is a branch of physics that focuses on temperature and 

energy. Though thermodynamics is based on a set of four axiomatic laws, engineers 

whose goal was to maximize efficiency of steam engines have originally developed 

this discipline. Statistical thermodynamics can successfully be applied to common 

everyday processes. For example, thermodynamics can be applied to the Carnot 

cycle that makes the refrigerator cool the beverages based on a refrigerant that 

follows a cycle where it at one point condenses into liquid and then evaporates. 

Thermodynamics can also be used to understand the meaning of an ice cube, where 

the phase transition of solid ice to liquid water occur at constant temperature and is 

due to energy absorbed by the ice cube. Another example of a thermodynamic 

system is the combustion engine where mechanical work is generated by 

compression and ignition of fuel. 

 1.1 First and second law of thermodynamics 

 The first and second laws of thermodynamic are two very useful statements. 

They will in this chapter be used to quickly derive an expression for both entropy 

and Gibbs free energy that can be used to evaluate the thermodynamic equilibrium 

conditions of a thermodynamic system. Consider a tank of a gas phase and a liquid 

phase, as shown in figure 1.1. There are N number of components in both phases. 

The tank (the system) is isolated from the rest of the universe (the surroundings), 

meaning that no heat or mass can be released/added to the tank. The gas phase and 

liquid phase are touching each other at the gas/liquid interface. Molecules can 

exchange between the two phases across the gas/liquid interface, as indicated by the 

two arrows. 

 

Figure 1.1 – Liquid/gas container 

 The first law of thermodynamics notifies that the internal energy of a closed 

system is invariably stored. Energy can step over from one substance to another, but 

it will never disappear. Energy can spread from substance to another as work or heat. 

In relation to the tank in figure 1.1, the first law of thermodynamics for the sake of 
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the liquid phase can be expressed as: 

𝑑𝑈𝑙𝑖𝑞𝑢𝑖𝑑 = 𝑑𝑄𝑙𝑖𝑞𝑢𝑖𝑑 + 𝑑𝑊𝑙𝑖𝑞𝑢𝑖𝑑 + ∑ 𝜇𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

𝑑𝑁𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

                      (1.1) 

 Moreover, the same for the gas phase:  

𝑑𝑈𝑔𝑎𝑠 = 𝑑𝑄𝑔𝑎𝑠 + 𝑑𝑊𝑔𝑎𝑠 + ∑ 𝜇𝑖
𝑔𝑎𝑠

𝑑𝑁𝑖
𝑔𝑎𝑠

                                    (1.2) 

𝑑𝑈𝑙𝑖𝑞𝑢𝑖𝑑 is the conversion of the internal energy of the liquid phase, 𝑑𝑄𝑙𝑖𝑞𝑢𝑖𝑑 is the 

heat conversion for  the liquid phase, the term 𝑑𝑊𝑙𝑖𝑞𝑢𝑖𝑑 = −𝑃𝑙𝑖𝑞𝑢𝑖𝑑𝑑𝑉𝑙𝑖𝑞𝑢𝑖𝑑 is the 

transformation mechanical work for the liquid phase and the term 

∑ 𝜇𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

𝑑𝑁𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

 is a transformation of the chemical work for  the liquid phase for 

a multicomponent concept where i is the component. The same designation for gas 

phase. The reformation of heat dQ in equation (1.1) and (1.2) is associated with the 

change in entropy dS and absolute temperature T follows: 

𝑑𝑆 =
𝑑𝑄𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒

𝑇
>

𝑑𝑄𝑖𝑟𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒

𝑇
                                       (1.3) 

 The convertible process is a transformation that is invariably present in 

equilibrium with the environments and does not have the generation of exact 

entropy, and this means that equation (1.3) maintains equality. Such a process can 

be achieved if infinitely small changes are made when the system moves from the 

initial position to the final position. Similarly, for a reversible process, the system 

reinforces the equilibrium with the embracing environment for any infinitesimal 

change. On the other hand, the irreversible process is performed in such a way that 

the change leads to the fact that energy leaves the system and entropy is formed, and 

this means that equation (1.3) includes inequality. All processes in nature are 

irrevocable. The reversible process is usually used as an ideal case and reference. As 

for example, an internal combustion engine can be 100% efficient for a reversible 

process, but in real life it is never 100% effective, for example, due to friction and 

heat loss. 

 The second concept of thermodynamics notifies that for the irreversible 

process, the total entropy of the system always progresses. It also means that heat 

cannot naturally transfer from low temperature to high temperature. According to 

the reservoir in figure 1.1, the second concept of thermodynamics can be expressed 

as: 

                                           𝑑𝑆𝑡𝑜𝑡 ≥ 𝑑𝑆𝑔𝑎𝑠 + 𝑑𝑆𝑙𝑖𝑞𝑢𝑖𝑑 ≥ 0                                           (1.4) 

 The infinitely small entropy change for each phase can be set as: 

              𝑑𝑆𝑙𝑖𝑞𝑢𝑖𝑑 =
𝑑𝑄𝑙𝑖𝑞𝑢𝑖𝑑

𝑇𝑙𝑖𝑞𝑢𝑖𝑑     𝑎𝑛𝑑    𝑑𝑆𝑔𝑎𝑠 =
𝑑𝑄𝑔𝑎𝑠

𝑇𝑔𝑎𝑠                                   (1.5) 

 For the heat-insulated system,   dQliquid=−dQgas, which determines that heat 
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cannot be advanced or added to the reservoir system, equation (1.5) takes on the 
character: 

             𝑑𝑆𝑙𝑖𝑞𝑢𝑖𝑑 = −
𝑑𝑄𝑙𝑖𝑞𝑢𝑖𝑑

𝑇𝑙𝑖𝑞𝑢𝑖𝑑
    𝑎𝑛𝑑    𝑑𝑆𝑔𝑎𝑠 = −

𝑑𝑄𝑔𝑎𝑠

𝑇𝑔𝑎𝑠
                            (1.6) 

 Combining equation (1.4) – (1.6) with equation (1.1) – (1.2), the internal 

energy for both phases can be expressed as: 

          𝑑𝑈𝑙𝑖𝑞𝑢𝑖𝑑 ≤ 𝑇𝑔𝑎𝑠𝑑𝑆𝑙𝑖𝑞𝑢𝑖𝑑 − 𝑃𝑙𝑖𝑞𝑢𝑖𝑑𝑑𝑉𝑙𝑖𝑞𝑢𝑖𝑑 + ∑ 𝜇𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

𝑑𝑁𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

,                  
(1.7) 

                   𝑑𝑈𝑔𝑎𝑠 ≤ 𝑇𝑙𝑖𝑞𝑢𝑖𝑑𝑑𝑆𝑔𝑎𝑠 − 𝑃𝑔𝑎𝑠𝑑𝑉𝑔𝑎𝑠 + ∑ 𝜇𝑖
𝑔𝑎𝑠

𝑑𝑁𝑖
𝑔𝑎𝑠

            (1.8) 

For an isolated system, the volume is conserved, meaning that dV liquid=−dV gas. 

The total internal energy is also conserved, meaning that dU liquid =−dUgas. In 

addition, so is the number of molecules, which gives dNliquid=−dNgas. Those three 
conservation laws combined with the expressions for internal energy for each phase 
in equation (1.7) – (1.8) and with equation (1.4) gives an interesting expression for 
the change in total entropy: 

𝑑𝑆𝑡𝑜𝑡 ≥ [
1

𝑇𝑙𝑖𝑞𝑢𝑖𝑑
 −

1

𝑇𝑔𝑎𝑠
] 𝑑𝑈𝑔𝑎𝑠 + [

𝑃𝑔𝑎𝑠

𝑇𝑙𝑖𝑞𝑢𝑖𝑑
 −

𝑃𝑙𝑖𝑞𝑢𝑖𝑑

𝑇𝑔𝑎𝑠
] 𝑑𝑉𝑔𝑎𝑠 − ∑ [

𝜇𝑖
𝑔𝑎𝑠

𝑇𝑙𝑖𝑞𝑢𝑖𝑑
 −

−
𝜇𝑖

𝑙𝑖𝑞𝑢𝑖𝑑

𝑇𝑔𝑎𝑠 ] 𝑑𝑁𝑖
𝑔𝑎𝑠

≥ 0                                                         (1.9) 

 By combining equation (1.7) – (1.8) with the relation between Gibbs free 

energy G, enthalpy H and entropy S and dG = dH – d(TS) (the so called Legendre 

transformation), it is possible to obtain a very interesting term for the change in 

Gibbs free energy for the liquid phase: 

  𝑑𝐺𝑙𝑖𝑞𝑢𝑖𝑑 ≤ −𝑆𝑙𝑖𝑞𝑢𝑖𝑑𝑑𝑇𝑔𝑎𝑠 + 𝑉𝑙𝑖𝑞𝑢𝑖𝑑𝑑𝑃𝑙𝑖𝑞𝑢𝑖𝑑 + ∑ 𝜇𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

𝑑𝑁𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

≤ 0     (1.10) 

In addition, the same for the gas phase: 

                𝑑𝐺𝑔𝑎𝑠 ≤ −𝑆𝑔𝑎𝑠𝑑𝑇𝑙𝑖𝑞𝑢𝑖𝑑 + 𝑉𝑔𝑎𝑠𝑑𝑃𝑔𝑎𝑠 + ∑ 𝜇𝑖
𝑔𝑎𝑠

𝑑𝑁𝑖
𝑔𝑎𝑠

≤ 0         (1.11) 

 Equation (1.10) and (1.11) are very useful. They relate the change in Gibbs 

free energy to easy accessible properties of the system, and they contain the three 

thermodynamic driving forces that drive a thermodynamic system towards 

equilibrium. -SdT describes the thermal driving force, related to change in 

temperature. VdP describes the mechanical pressure driving force, related to change 

in pressure. 

 Σ𝜇i Ni describes the chemical driving force, related to the exchange of particles. 

 1.2 Criteria for thermodynamic equilibrium 
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 The transformation of the total Gibbs free energy is the sum of the change in 

Gibbs free energy for each phase. 

                                        𝑑𝐺𝑡𝑜𝑡 = 𝑑𝐺𝑙𝑖𝑞𝑢𝑖𝑑 + 𝑑𝐺𝑔𝑎𝑠                                                (1.12) 

 The system moves to balance with support dGtot <0 and dStot> 0. When a 

system reaches equilibrium conditions due to mitigation of driving forces, then 

𝑑𝐺𝑡𝑜𝑡 = 0, , which can be stated as: 

                                        𝑑𝐺𝑡𝑜𝑡 = 𝑑𝐺𝑙𝑖𝑞𝑢𝑖𝑑 + 𝑑𝐺𝑔𝑎𝑠 = 0                                       (1.13) 

and 

                                               𝑑𝐺𝑙𝑖𝑞𝑢𝑖𝑑 = −𝑑𝐺𝑔𝑎𝑠                                                      (1.14) 

 This means that under thermodynamic equilibrium conditions, the total free 

Gibbs energy is minimized. At the same time, the infinitely smallest change in the 

Gibbs free energy of the liquid phase corresponds with a negative change in the 

Gibbs free energy of the gas phase. At equilibrium conditions, there is no change in 

temperature or pressure, so dT =0 and dP=0. Therefore, by combination of 

equation (1.10)-(1.11) and (1.13), the total Gibbs free energy can written as: 

                         𝑑𝐺𝑡𝑜𝑡 = ∑ 𝜇𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

𝑑𝑁𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

+ ∑ 𝜇𝑖
𝑔𝑎𝑠

𝑑𝑁𝑖
𝑔𝑎𝑠

                             (1.15) 

 The total change in quantity 𝑁𝑖  (can be a change in e.g. number of molecules 

or number of moles) is: 

                                             𝑑𝑁𝑖
𝑡𝑜𝑡 = 𝑑𝑁𝑖

𝑙𝑖𝑞𝑢𝑖𝑑
+ 𝑑𝑁𝑖

𝑔𝑎𝑠
                                         (1.16) 

 Consequently, in equilibrium conditions, the transfer of molecules between 

the liquid phase and the gas phase from one to the other is carried out with exactly 

the same speed. It looks the same as in the reaction kinetics. When the reaction 

appears in equilibrium, the direct and reverse reactions are performed at the same 

rate. Similarly, in equilibrium: 

                       𝑑𝑁𝑖
𝑡𝑜𝑡 = 0       𝑎𝑛𝑑       𝑑𝑁𝑖

𝑙𝑖𝑞𝑢𝑖𝑑
= −𝑑𝑁𝑖

𝑔𝑎𝑠
                                   (1.17) 

Finally, the change in total Gibbs free energy can be written as: 

             𝑑𝐺𝑡𝑜𝑡 = (∑ 𝜇𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

− ∑ 𝜇𝑖
𝑔𝑎𝑠

)𝑑𝑁𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

= 0                                      (1.18) 

Equation (1.18) implies that 𝜇𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

= 𝜇𝑖
𝑔𝑎𝑠

 at equilibrium. 

 When a system reaches equilibrium conditions, also dStot =0: 
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𝑑𝑆𝑡𝑜𝑡 = [
1

𝑇𝑙𝑖𝑞𝑢𝑖𝑑
 −

1

𝑇𝑔𝑎𝑠
] 𝑑𝑈𝑔𝑎𝑠 + [

𝑃𝑔𝑎𝑠

𝑇𝑙𝑖𝑞𝑢𝑖𝑑
 −

𝑃𝑙𝑖𝑞𝑢𝑖𝑑

𝑇𝑔𝑎𝑠
] 𝑑𝑉𝑔𝑎𝑠 − ⋯  

− ∑ [
𝜇𝑖

𝑔𝑎𝑠

𝑇𝑙𝑖𝑞𝑢𝑖𝑑  −
𝜇𝑖

𝑙𝑖𝑞𝑢𝑖𝑑

𝑇𝑔𝑎𝑠 ] 𝑑𝑁𝑖
𝑔𝑎𝑠

= 0                                                 (1.19) 

 At equilibria the two phases in figure 1.1 can coexist, which is a result from 
minimization of the total Gibbs free energy and maximization of the total entropy. 

Therefore, both dGtot =0 and dStot =0, and the three thermodynamic equilibrium 

conditions between liquid and gas phase can be expressed as: 

 

Thermal equilibrium             𝑇𝑙𝑖𝑞𝑢𝑖𝑑 = 𝑇𝑔𝑎𝑠                                              (1.20) 

Mechanical equilibrium      𝑃𝑙𝑖𝑞𝑢𝑖𝑑 = 𝑃𝑔𝑎𝑠                                              (1.21) 

Chemical equilibrium          𝜇𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

= 𝜇𝑖
𝑔𝑎𝑠

                                              (1.22) 

 

 No system can achieve thermodynamic equilibrium [1,2]. This is because 

there will always be some fluctuations in temperature, pressure and the number of 

molecules between the phases. Often, when applying thermodynamic equilibria in 

the presentation of a real process, this process is oriented as a quasi-equilibrium 

process. For a quasi-equilibrium process, the changes in the transition of the system 

from state 1 to state 2 are so small that it can be foreseen that the system is always 

in equilibrium for each small change. Therefore, the term “quasi-equilibrium” will 

be used when it is implied that the modeling carried out in this work has reached 

equilibrium. 
  Free energy calculation. Equations (1.10) and (1.11) cover three 
thermodynamic driving forces: thermal, mechanical, and chemical. Both 
temperature and pressure can be simply fixed in many thermodynamic systems, 
including those vital for our daily life. For example, almost all homes have a 
thermostat that measures the outside temperature. Knowledge of the pressure and 
temperature of liquids in the working blocks is important for the successful operation 
of oil refineries and gas processing plants; therefore, numerous pressure and 
temperature sensors are installed in pipeline systems. On the other hand, chemical 
potential cannot be measured accurately. 
 Although the methods for calculating the chemical potential have been 

prepared. There are two cases - the method of inserting particles Widom and the 

method of thermodynamic integration. Both of them appear by computational 

methods, convenient to calculate the chemical potential of a substance. In this 

research work, the method of thermodynamic integration was chosen, since it could 

be relatively simply carried out within the framework of purely molecular-dynamic 

modeling of arbitrary density. The method of introducing particles to Widom will 

require an auxiliary sample and does not guarantee that it will work for modeling 

involving dense phases [3,4,5,6]. In short, the Widom particle insertion method 

is built on a sample of the probability that a test particle will be installed in the 
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system. A much thoroughly explained method of thermodynamic integration is 

formed on finding a reversible approach by which the system follows from its initial 

state to the final state. The system is an isolated one-component system with a 

constant number of particles at a constant temperature. The discovery of this method 

can be done by a system modeling approach for a variety of constant temperatures 

and measuring the potential energy per molecule for each simulation. Then you can 

create a graph of potential energy per molecule from 1/T. The potential energy per 

molecule in the simulation system should be measured for temperatures ranging 

from normal conditions (for example, 298 K) to infinitely high temperatures. 

Further, the polynomial function can be adapted to a series of information in the 

potential energy per molecule against the 1/T graph. The obtained polynomial 

selection function describes the approach by which the system passes from its initial 

to the final state. The initial state is the potential energy per molecule at the normal 

temperature of the system, and its final state is the potential energy per molecule at 

the theoretical infinite temperature. In the final state, the system will behave like an 

ideal gas. For an ideal gas, free energy and chemical potential are established. The 

basic integration method can be used to solve a polynomial similarity function. 

The integrated function can be demonstrated as [38, 39]: 

      𝜇𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∫ 𝑈𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑑(1 𝑇⁄ )
𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑇𝑓𝑖𝑛𝑎𝑙
                   (1.23) 

 where μresidual is the residual chemical potential and Uresidual is the 

residual potential energy per molecule [38]. 

 The total chemical potential μtot can be expressed as: 

                                                   𝜇𝑖
𝑡𝑜𝑡 = 𝜇𝑖

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝜇𝑖
𝑖𝑑𝑒𝑎𝑙 𝑔𝑎𝑠

                                 (1.24) 

 The method of thermodynamic integration with equation (1.23) provides for 

calculating the residual chemical potential of the substance of a real system. The 

chemical potential of an ideal gas can be calculated analytically. Unobtrusively, this 

is the total chemical potential that is used to compare the chemical potentials of 

various substances [7, 8, 9]. 

 The chemical potential can also be defined in terms of thermodynamic state 

functions. Some examples are (at constant Nj where j≠i): 

     𝜇𝑖 = (
𝜕𝐺

𝜕𝑑𝑁𝑖
)

𝑇,𝑃
, 𝜇𝑖 = (

𝜕𝐴

𝜕𝑑𝑁𝑖
)

𝑉,𝑇
, 𝜇𝑖 = (

𝜕𝐻

𝜕𝑑𝑁𝑖
)

𝑆,𝑃
, 𝜇𝑖 = (

𝜕𝑈

𝜕𝑑𝑁𝑖
)

𝑆,𝑉
        (1.25) 

 They all tells us how the state variables Gibbs free energy G, internal energy 

U, enthalpy H and Helmholtz free energy A change when one more particle is added 

to the system by holding the respective state variables temperature T, pressure P, 

entropy S, volume V constant. Therefore, the chemical potential can be defined, as 

the work required adding one more particle to the system. The chemical has an 

energy SI unit in kJ/mole. Heat flows from a system with high temperature to a 
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system with low temperature, a rock falls from high to lower height and molecules 

diffuse from a region with high chemical potential to a region with lower chemical 

potential. 

 

 

 

 

 

1.3 Statistical mechanics. Statistical mechanics. Ensembles in 

statistical mechanics. Coupling between microscopic and macroscopic 

properties 

 The basis of statistical mechanics is probabilistic propagation. The statistical 

path is used to represent physical phenomena due to the extremely large number of 

molecules. A significant number of molecules is detected by the Avogadro number,  

NA = 6.023 ∙ 1023 molecules / mol. An example of the application of probability 

theory in statistical mechanics is the Maxwell-Boltzmann velocity distribution. 

Maxwell and Boltzmann studied that for each temperature there is a probability 

distribution of the velocity of molecules. This means that the molecules do not move 

at the same speed, but for each temperature, each speed a molecule may have has an 

established probability. This principle is illustrated in figure 1.2 with the number of 

molecules (proportional to probability) along the Y axis and velocity along the X 

axis. The distribution is for ideal gases, which means that the molecules do not 

interact with each other, with the exception of collisions.  

As an example of the molecular velocity, the most probable Maxwell-

Boltzmann velocity of the nitrogen molecule (N2) in air is 422 m/s. 

Figure 1.2 – Illustration of Maxwell-Boltzmann velocity distribution 

 Ensembles in statistical mechanics. The main goal of statistical mechanics is 

to detect the macroscopic properties of the system, considering it from a molecular 

point of view. The ensemble consists of a set of microstates, all of which are limited 

by certain macroscopic properties. In explaining what a statistical ensemble is, let 

us start with a representation of a large box system with four walls containing gas 

molecules. In figure 1.3, gas molecules are shown in green dots. 

 Figure 1.3 illustrates the idea of statistical ensembles and microstates. The 
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concept is that if we follow the system in time, for example, as a result of molecular 

dynamics modeling, the system will be in a new microstate for each time interval 

due to molecular interactions and movement. Each microstate in the ensemble is 

localized by some fixed macroscopic properties of the system. 

 Figure 1.3 illustrates only the position of the gas particles in the system. In 

both classical and statistical mechanics, each particle also has an impulse p = mv, 

where m is the mass of the particle, and v is the velocity of the particle. The basic 

position xyz and the momentum for each particle are usually described by the phase 

space. The dimension of the phase space is 6N, where N is the number of particles 

in the system. That is, 3 measurements for Cartesian xyz-coordinates and 3 

measurements for each component of the particle momentum. 

    

   

 

 

a) time t1 b) time t2 

Figure 1.3 – Illustration of NVT ensemble and microstates 

 The atomic and molecular properties can be different for each microstate, 

which is just natural because the molecules change their position and momentum 

each period. In a), the time is t1. At this period, the system is in a certain microstate. 

In b), the time is t2. From t1 to t2, the system changes its microstates because the xyz- 

position and the momentum of the molecules are updated. The microstate that the 

system is in at both time t1 and t2 are constrained by the governing statistical 

ensemble. In this case, each microstate have to correspond to the NVT ensemble. 

For the NVT ensemble, each microstate must have the same number of molecules 

N, the same volume V and give the ensemble temperature T. 

Table 1.1 – Some examples on statistical ensembles and their fixed macroscopic 

properties 

  Ensemble Constant macroscopic variables 

Canonical N, V, T 
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Isothermal-Isobaric N, P, T 

Micro canonical N, V, E 

Grand canonical N, μ, T 

  

 

There are many statistical ensembles. Some of them are specified in table 1.1 

with matching macroscopic properties constants that identify the ensemble. The 

macroscopic properties that are fixed for each system in an ensemble can be 

controlled by accepting an adjustment of the boundaries that the system has with its 

environment. For example, for a system in a canonical ensemble, the temperature 

can be kept on average constant, making the system an isolated system surrounded 

by a thermostat, so that thermal energy can be supplied to the system to adjust the 

temperature. 

 Hamiltonian is closely interconnected with the phase space. Hamiltonian is 

the total energy of the system. This is the sum of the potential energy and kinetic 

energy and can be expressed as: 

                 𝐻(𝑞, 𝑝, 𝑡) = 𝑈 + 𝐾𝐸 = 𝑈(𝑞1, 𝑞2, … , 𝑞𝑁) + ∑
𝑝𝑖

2

2𝑚𝑖
                         𝑁

𝑖=1 (1.27) 

 where particle i with mass mi will have the position qi and momentum pi in the 

phase space.  

 Coupling between microscopic and macroscopic properties. The 

decomposition function can be derived for each statistical ensemble. The separation 

function can provide information about the available microstates for the system in a 

given ensemble, and it is a function of the thermodynamic unstable state. It can also 

be detected as the volume that the system captures in the phase space. Similarly, 

partitioning functions are the link between microscopic and macroscopic properties. 

The microstate is a point in the phase space, and the macrostate is the distribution of 

probabilities in the phase space. The disadvantage associated with the use of 

separation functions in an application is that they are very advanced to solve. For 

example, the separation function for a microcanonical ensemble can be fixed as: 

                             𝛺(𝑁, 𝑉, 𝐸) = 𝑀𝑁 ∫ 𝛿(𝐻(𝑞, 𝑝, 𝑡) − 𝐸)𝑑𝛤                                 (1.28) 

 where Q is the number of microstates belonging to the microcanonical 

ensemble;  

  MN is the microcanonical ensemble normalization factor;  

  E is the microcanonical ensemble energy and Γ is the phase space 

volume [10]. Additionally, the separation function for a canonical ensemble can be 

obtained from the microcanonical ensemble by connecting the system with an 

unlimited large external heat reservoir, and it can be expressed as: 

                                    𝑄(𝑁, 𝑉, 𝑇) = 𝐶𝑁 ∫ 𝑒−𝐻(𝑞,𝑝,𝑡) 𝑇𝑘𝐵⁄ 𝑑𝛤                                   (1.29) 
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 where Ω is the number of microstates belonging to the canonical ensemble, 

𝐶𝑁is the canonical normalization factor and 𝑘𝛽is the Boltzmann constant [11,12]. 

 In the case of the microcanonical ensemble, each microstate with a total 

energy H(q,p) within a certain range of the ensemble energy E can be assumed to 

have the same probability. All the microstates that do not satisfy this ensemble 

energy can be assumed to have 0 probability. Thus, for the microcanonical ensemble, 

at equilibrium conditions, the probability Pν for finding the system in a particular 

microstate ν is: 

                                                   𝑃𝑣 =
1

Ω(𝑁,𝑉,𝐸)
                                                        (1.30) 

And the entropy can be defined as: 

                                                        𝑆 = 𝑘𝐵 log Ω(𝑁, 𝑉, 𝐸)                                           (1.31) 

 In molecular dynamics simulation studies, usually the Ergodicity theorem is 

used as a link between the microscopic and the macroscopic properties. In molecular 

dynamics simulation, we follow the time evolution of the system on a microscopic 

level. We know the initial start configuration of the molecules in the system and use 

classical mechanics Newtonian equations of motion to follow the trajectories and 

evolution of the system. 

 The Ergodicity theorem states that for both large enough time and large 
number of molecules, the ensemble average ⟨A⟩ is assumed to be the same as the 
time average 

A (t). The theorem can be expressed as: 

                                              lim
𝑡→∞

𝐴(𝑡)̅̅ ̅̅ ̅̅ = 〈𝐴〉                                                               (1.32) 

 The ensemble average can be analyzed as the average for all microstates in 

the phase space. It is preferable that the system provides the entire phase space 

during the entire simulation time, visiting all possible microstates for given fixed 

thermodynamic properties of the ensemble, but in reality this is impracticable due 

to, for example, information losses. The average time can be recognized as the 

average for all microstates that the system spends during the simulation run. 
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2 Theoretical basis and numerical method 

2.1 Molecular dynamics. Governing equations 

 A significant advantage, the characteristic molecular dynamics modeling, is 

the feasibility of having a molecular level of control, visualization and numerical 

analysis. In many supplements of research and optimization, this is an absolute need, 

for example, for adsorption processes, where selectivity and diffusion can be really 

understood at the molecular level. The main goal of molecular dynamics modeling 

is to gain a deeper understanding of molecular interactions and trajectories that could 

not be otherwise understood. Conjunction, simulations tend to be as realistic and 

physical as possible and to simulate a real experiment. Molecular dynamics 

modeling can be considered as a converter between the microscopic world of 

molecular statistical mechanics and the macroscopic thermodynamic world [13, 14, 

15]. 

 Governing equations. The illustration of the system belonging to the gas 

molecule box in figure 1.3 can be related to the molecular dynamics simulation. 

When modeling molecular dynamics, knowing the initial configuration of the launch 

and some signifying equations of motion, the evolution of particles over time can be 

approximated. Based on equation 2.1, the total force F acting on each atom in the 

system can be found by the generally negative gradient of potential energy U (r) 

between two atoms separated by distance r: 

𝐹 = −∇𝑈(𝑟)                                                     (2.1) 

 The classical mechanics of the equation of motion of Newton is applied to the 

numerical gradual calculation of the total force acting on each atom in the system. 

The initial configuration of the components in the simulation system is determined, 

and then equation (2.1) is used to calculate the total force acting on each atom in the 

system and their accelerations. 

 This gives a time evolution of the system, and the position and momentum of 

each atom is restored every time step. As mentioned earlier, the position of an atom 

in phase space is represented by a function (q, p). 

2.2  Integration of the equations of motion. The Verlét algorithm 

 Newton’s second law can be stated as: 

                                               𝐹𝑖 = 𝑚𝑖𝑎𝑖 =
𝑑2𝑞𝑖

𝑑𝑡2
                                                        (2.2) 

 where 𝐹𝑖 is the total force on particle i; 

  mi is the mass; 

  𝑎𝑖 is the acceleration;  

  𝑞𝑖 is the position vector;  

  t is the time. 

 Combining equations (2.1) and (2.2), it is possible to calculate the acceleration 
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of each particle for each time interval. When modeling molecular dynamics, it is 

essential to have an integration algorithm to advance the system over time. 

Modifications of such algorithms exist. Two examples are the Verlét algorithm and 

the Leap-frog algorithm. The Verlét algorithm will be used for temporal integration 

of modeling in this work and will be extracted soon below. 

 Equation (2.2) is a second order differential equation. It would be more 

feasible to write it as two first order differential equations to more easily access the 

velocity vector vi and the position vector qi: 

                                                           𝐹𝑖 = 𝑚𝑖
𝑑𝑣𝑖

𝑑𝑡
                                                       (2.3) 

                                                               𝑣𝑖 =
𝑑𝑞𝑖

𝑑𝑡
                                                         (2.4) 

 The Verlét algorithm. One of the best-developed time integration algorithms 

is the Verlét algorithm. The derivation of the Verlét algorithm starts by considering 

the Taylor expansion for the position qi for particle i for time (t +- ∆t): 

𝑞𝑖(𝑡 + ∆𝑡) = 𝑞𝑖(𝑡) + (
𝑑𝑞𝑖

𝑑𝑡
)

𝑡
∆𝑡 +

1

2
(

𝑑2𝑞𝑖

𝑑𝑡2 )
𝑡

(∆𝑡)2 +
1

6
(

𝑑3𝑞𝑖

𝑑𝑡3 )
𝑡

(∆𝑡)3 +

+𝑂(∆𝑡)4                                                                                                               
(2.5) 

𝑞𝑖(𝑡 − ∆𝑡) = 𝑞𝑖(𝑡) − (
𝑑𝑞𝑖

𝑑𝑡
)

𝑡
∆𝑡 +

1

2
(

𝑑2𝑞𝑖

𝑑𝑡2 )
𝑡

(∆𝑡)2 −
1

6
(

𝑑3𝑞𝑖

𝑑𝑡3 )
𝑡

(∆𝑡)3 +

+𝑂(∆𝑡)4                                                                                                                                 (2.

6) 

 where ∆t is the time step [43,44]. By adding equation (2.5) and (2.6), the result 

is: 

                𝑞𝑖(𝑡 + ∆𝑡) = 2𝑞𝑖(𝑡) − 𝑞(𝑡 − ∆𝑡) + (
𝑑2𝑞𝑖

𝑑𝑡2 )
𝑡

(∆𝑡)2 + 𝑂(∆𝑡)4           (2.7) 

 Equation (2.7) is called the Verlét algorithm. O (∆ t )4 is the truncation error 

of the algorithm and is the difference between the approximated Taylor expansion 

and the true smooth function. By choosing a large time step ∆t, the clipping error 

will be greater than if a minor step was chosen. Notice that in equation (2.7), the 

velocity term 𝑣𝑖 = (𝑑𝑞𝑖 / 𝑑𝑡 )𝑡 is cancelled out. By applying the numerical finite 

difference method, the velocity can be obtained: 

                                          𝑣𝑖(𝑡) = (
𝑞𝑖(∆𝑡)−𝑞𝑖(𝑡−∆𝑡)

2∆𝑡
)                                     (2.8) 

 The Verlét algorithm makes it possible to calculate the new position qi at time 

(t+∆t) for all the particles of the system, and to do this, both the position qi and 

velocity vi at current time t as well as the position at previous time (t-∆t) are required. 
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The time step ∆t is often chosen to be 1 femtoseconds (10-15 seconds) in molecular 

dynamics simulations. 

 2.3 Force fields. Bonded interactions. Bond stretching. Angle bending. 

Non-bonded interactions. Van der Waals interactions. The Lennard-Jones 

potential. Electrostatic interactions 

 Force fields are the key and the basis for molecular dynamics modeling. They 

also provide the input parameters used by the governing equations of motion to 

calculate the position of atoms in the phase space. Each atom in the system is 

described by a set of parameters of the force field. There are many different types of 

force fields, and the choice of the “right” for the modeling system and conditions 

can be crucial for quality results. The total potential energy Utot is often divided into 

two groups: 

                                          𝑈𝑡𝑜𝑡 = 𝑈𝑏𝑜𝑛𝑑𝑒𝑑 + 𝑈𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑                                         (2.9) 

 

 Bonded interactions. The first constituents of the total potential energy in 

equation (2.9) is the bonded interactions Ubonded. It can be expressed as: 

 

                  𝑈𝑏𝑜𝑛𝑑𝑒𝑑 = 𝑈𝑏𝑜𝑛𝑑 + 𝑈𝑎𝑛𝑔𝑙𝑒 + 𝑈𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 + 𝑈𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠                     (2.10) 

 

 Inherently, linked interactions are also called intramolecular interactions, 

because they hold atoms in a molecule together in the system under study. Two 

molecules that will be used in this work (water and gas); they both have the potential 

to stretch the bond and bend the angle, but they do not have dihedral or irregular 

potentials because of their usual triatomic molecular structure. 

 Bond stretching. The corresponding length of chemical bonds between two 

atoms in a molecule changes due to vibrations. Changes in bond length are very 

often described with the potential for stretching a harmonic bond. Hook's law is 

usually used to describe how the bond stretching potential energy Ubond (r) changes 

as the bond length oscillates around its equilibrium length req: 

 

                                        𝑈𝑏𝑜𝑛𝑑(𝑟) =
1

2
𝑘𝑏𝑜𝑛𝑑(𝑟 − 𝑟𝑒𝑞)

2
                                         (2.11) 

 

 where r is the distance between the two atoms from atomic center to atomic 

center;  

  kbond is the bond stretching constant. A higher bond-stretching constant 

would result in bonds that are more rigid. 
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Figure 2.1 – Illustration of intramolecular harmonic bond stretching between two 

atoms that makes up a molecule. Ball/spring model 

 Figure 2.1 illustrates this idea, showing two spheres connected to a spring. 

Each ball is an analog of the atom, and the spring is an analog of the connection 

between them. Some force field models consider chemical bonds as rigid, which 

means that bonds cannot stretch and bond lengths are unchangeable in simulation 

time. 

 Angle bending. Similar to the length of the bond between two atoms, the angle 

between the three atoms will repeatedly transform over time due to molecular 

vibrations, as shown in figure 2.1. Potential energy as a function of angle can be 

demonstrated through the harmonic potential according to the Hook's law: 

 

𝑈𝑎𝑛𝑔𝑙𝑒𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝜃) =
1

2
𝑘𝑎𝑛𝑔𝑙𝑒(𝜃 − 𝜃𝑒𝑞)

2
                                         (2.12) 

 

 where θ is the angle between three atoms in the same molecule;  

  θeq is the equilibrium angle; 

  ka is the angle-bending constant. 

 

 
 

Figure 2.2 – Illustration of intramolecular harmonic angle bending between three 

atoms that makes up a molecule. Ball/spring model 

 Non-bonded interactions. Low-bound interactions are represented both intra- 

and intermolecular, and they can include interactions with all other atoms in the 

system. They can be sorted into two types: far and near. Long-range interactions are 
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electrostatic forces, usually depicted in models according to Coulomb's law. Short-

range interactions are Van der Waal (vdw) interactions and are usually depicted by 

the Lennard-Jones model or the Buckingham model. The non-bonded interactions 

𝑈𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 can be expressed as: 

 

                                    𝑈𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 = 𝑈𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑈𝑣𝑑𝑤                                 (2.13) 

 

 Van der Waals interactions. The Lennard-Jones potential. The Van der Waal 

interactions constitute of three forces, namely Keesom forces, Debye forces and 

London dispersion forces, as shown in equation (2.14). 

 

                                     𝑈𝑣𝑑𝑤 = 𝑈𝐾𝑒𝑒𝑠𝑜𝑚 + 𝑈𝐷𝑒𝑏𝑦𝑒 + 𝑈𝐿𝑜𝑛𝑑𝑜𝑛                               (2.14) 

 

The three parts of the Van der Waal forces are due to different electrostatic 

interactions: 

- Keesome forces: stationary dipole - constant dipole interactions; 

- Debye forces: stationary dipole-induced dipole interactions; 

- London dispersion forces: induced dipole - induced dipole. 

 Keesom forces are interactions between two stationary polar molecules. The 

polarity of molecules can be, for example, dipole-dipole interactions or quadrupole-

quadrupole interactions. The polarity of the molecule arises from the difference in 

electronegativity between the atoms in the molecule. 

 The Debye forces are interactions between a molecule with a constant dipole 

and a molecule with an induced dipole. The induced dipole moment of the molecule 

is due to the time polarization of this molecule, which occurs in the presence of a 

polar molecule. 

 London dispersion forces are the interaction of two non-polar molecules. This 

interaction force is predetermined by the time polarization of non-polar molecules 

due to the motion and various concentrations of electrons in the electron cloud 

surrounding the atoms of the molecule. The Van der Waal interactions are short-

range and considered as weak forces. They can be written as: 

 

                                             𝑈𝑣𝑑𝑤 = 𝑈𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 +

𝑈𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛                                      (2.15) 

 The Keesom, Debye and London dispersion forces are the attractive 

contribution of the Van der Waal forces and can be expressed as: 

                         𝑈𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑈𝐾𝑒𝑒𝑠𝑜𝑚 + 𝑈𝐷𝑒𝑏𝑦𝑒 + 𝑈𝐿𝑜𝑛𝑑𝑜𝑛                                (2.16) 

 

 The most common mathematical model that describes the short-range Van der 

Waal forces is the Lennard-Jones potential: 
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                                               𝑈𝐿𝐽(𝑟) = 4𝜀 [(
𝜎

𝑟
)

12
− (

𝜎

𝑟
)

6

]                                     (2.17) 

 

 where ε is the well depth of the potential; 

  σ is the Van der Waal radius;  

  ε and σ are the parameters that makes the Lennard-Jones potential 

unique for each component of a simulation system. They can be fitted to 

experimental data or approximated with advanced quantum mechanics calculations. 

There is a certain distance between atoms where the force between them is 0. 

For a greater distance than that point, an attractive Lennard-Jones force is yielding. 

For a less distance, a repulsive Lennard-Jones force is yielding. 

 This is illustrated in figure 1.6. For the Lennard-Jones potential, given by 

equation (2.17), the attractive forces decrease as a function of 1/r6 and the repulsion 

contribution of the Van der Waal force fall off as 1/r12. The repulsion happens when 

two intermolecular atoms are too close and the electron clouds overlap. As the 

electron clouds overlap, the positively charged nuclei of the atoms results in 

repulsion according to Paulie's exclusion principle. 

 

 
 

Figure 2.3 – A general form of the Lennard-Jones 12-6 potential interactions 

between two similar atoms. Potential energy U(r) vs distance between the atoms r 

 

  The Lennard-Jones interaction potential is perhaps the most well known, but 

also unlimited use of Buckingham's potential [17]. Buckingham's potential has a 

softer repulsion [17], which means that the repulsion curve will not be as steep as 

the Lennard-Jones repulsive interaction curve in figure 2.3. The Buckingham 

potential has three parameters, that is, A, B, and C, compared with the two 

parameters ε, σ in the Lennard-Jones potential. Buckingham potential can be written 

as [18]: 

                           𝑈Buckingham(𝑟) = 𝐴 × 𝑒𝑥𝑝(−𝐵 × 𝑟) −
𝐶

−𝑟6
                          (2.18) 

 Note that the attractive portion of Buckingham’s potential also complies as 

1/r6. Buckingham's potential has the advantage that the repulsive part expresses 

itself exponentially because it makes it more physical than the repulsive part for 
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Lennard-Jones potential [19]. However, on the other hand, the three interaction 

parameters for Buckingham's potential make it computational more precious. 

 Electrostatic interactions. Electrostatic fragmentary interactions function over 

great distances and are considered as powerful forces. For many force fields, the 

partial charges established for each atom are calculated based on differences in 

quantum mechanics and electronegativity. This provides to simulate, for example, 

the dipole moment of water. The partial charge of each atom appears in the center 

of each atom; therefore, electrostatic interactions can also be called simple point 

charge interactions. By introducing electrostatic interactions to simple point charge 

interactions, Coulomb's law can be used to calculate electrostatic forces between two 

atoms. Coulomb's law can be demonstrated as: 

                                               𝑈Coulomb =
1

4𝛱𝜀0𝜀𝑟
×

𝑄𝑖𝑄𝑗

|𝑟𝑖𝑗|
                                   (2.19) 

 where Qi and Qj are the partial simple point charges for atom of type i and j; 

   |r| is the absolute distance vector between the two atoms; 

  ε0 is the permittivity of vacuum and εr is the relative permittivity [20, 

21]. 

 

2.4 Periodic boundary conditions 

 

Consider the system consisting of a box of atoms, as shown in figure 2.4. 

Imagine that the system is open, so the six surface walls of the box have no mass or 

interactions. This means that when the simulation opens, and the atoms undertake to 

interact and move, some of them are likely to leave the box volume. When these 

atoms go out of the box, they cross the lines of the open system. Thus, the number 

of atoms in the system is not conserved, and the density of atoms in the box will 

decrease. 

 

 

Figure 2.4 – A box of atoms 

 

To address this problem, periodic boundary conditions (PBC) are applied to 

the modeling system to make it a periodic system. figure 2.4 illustrates the concept 



29 

 

of periodic boundary conditions. In figure 2.4, the rectangle in figure 2.3 is for 

simplicity shown in two dimensions. The original box is a box in the middle with 

dark red atoms. In such a two-dimensional space as when periodic boundary 

conditions are correctly applied to the modeling system, there will be a copy of the 

original box on each side of the original box. The atoms of the copied boxes are 

colored light red. So, the idea with periodic boundary conditions is that each of the 

blocks, 9 blocks in this example, will have exactly the same movement as the next 

block when the atom moves up and into the next block.  

 When this happens, a copy of this atom will also fall into the box from which 

it came, from the next box below. This means that an atom that moves from the 

source box and into the box above, this atom will repatriate back to the source box 

from below. 

Figure 2.5 – Illustration of a periodic system 

 

 Thus, using periodic boundary conditions to the system, it is possible to keep 

the density of the system constant over time. It also allows you to simulate an 

infinitely large three-dimensional system in periodic instructions, even with a small 

number of atoms. 

 

 2.5 Temperature control. The Berendsen thermostat. The Nosé-Hoover 

thermostat. Pressure control 

 

 From the illustration of the Maxwell-Boltzmann distribution over the velocity 

of ideal gases in figure 1.2, it can be seen that a higher temperature gives a higher 

probability of the existence of molecules with a higher velocity. This leads to a 

relationship between temperature and average kinetic energy. ⟨ KE ⟩: 

                                           〈𝐾𝐸〉 =
1

2
∑ 𝑚𝑖〈𝑣𝑖

2〉 =
3

2
𝑘𝑏𝑇                                      𝑖 (2.20) 

 where mi is the mass of particle i; 

   vi is the velocity of particle i;  
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   kb is the Boltzmann constant and T is the temperature. 

 A predominantly natural ensemble in the modeling of molecular dynamics 

would be the use of a microcanonical ensemble due to the conservation of energy 

and Newton's equations of motion. Nevertheless, in real life, the vast majority of 

experiments take place under conditions of constant temperature, not constant 

energy. When the canonical ensemble is used to model molecular dynamics, it is 

imperative to use a thermostat to maintain a constant temperature. There are many 

computational algorithms for this purpose. Three examples are the Nose-Hover 

thermostat, the Berendsen thermostat and the Anderson thermostat. 

 The goal with a thermostat is to maintain a constant average system 

temperature. For each time step, the system will be in a new microstate with a new 

instantaneous kinetic energy. If the kinetic energy of each time step were kept 

constant, it would have affected the system too much. Thus, when modeling 

molecular dynamics, when a thermostat is used, the temperature will fluctuate 

around the average temperature of the thermostat. Although it is important to 

remember that fluctuations are usually smaller for a system with a large number of 

particles. 

 The Berendsen thermostat. The Berendsen thermostat uses velocity scaling to 

control the temperature [22]. The velocities are scaled each time step and the 

temperature of the system is controlled by the equation: 

                                                    
𝑑𝑇(𝑡)

𝑑𝑡
=

1

𝜏
(𝑇0 − 𝑇(𝑡))                                           (2.21) 

 where T(t) is the temperature of the system at time t [23, 24]. T0 is the 

temperature of an external hypothetical heat bath that the Berendsen thermostat uses 

to maintain the temperature of the system by coupling the two thermostats with the 

coupling parameter τ. Both T0 and τ are often used as input parameters in a run script 

for a molecular dynamics simulation. The value of the communication parameter 

fixes how active the thermostat is and how much the thermostat acts on the system. 

On average, the goal is to ensure that the temperature of the system is the same as 

the required temperature 𝑇0. 

 The Berendsen thermostat showed good tendencies toward the equilibrium of 

a non-equilibrium system [25]. Another advantage of the Berendsen thermostat is 

the simplicity of the code; it follows from this that it is easy to implement. However, 

it has some drawbacks: it is often said that it cannot generate the canonical splitting 

function (it cannot create the correct statistical ensemble) [25], it can generate a 

discontinuity in the trajectories of the phase space, it is non-ergodic and not 

reversible in time [25]. However, in practice, the magnitude of the deviation from 

the canonical distribution is inconspicuously small enough [25]. 

 The Nosé-Hoover thermostat. Nosé came up with a set with equations in 

1984 [26] before Hoover in 1985 improved and simplified those equations to make 

the the Nosé-Hoover thermostat [27]. 

 Equalities used in the Noose-Hoover algorithm provide other modifications 

of Newton's equations of motion. An external thermal bath is added to the system, 
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which gives atoms an auxiliary degree of freedom. Due to this heat bath, the total 

energy of the modeling system changes. Thus, the additional kinetic energy and 

potential energy are added to the total energy [28, 29]. Heat energy can spread 

between the system and the thermostat. In short, the equation of motion for an 

additional degree of freedom is solved. This equation can be expressed as the 

expansion of the Hamiltonian with an auxiliary degree of freedom [29]: 

            𝐻𝑁𝑜𝑠é−𝐻𝑜𝑜𝑣𝑒𝑟 = ∑
𝑝𝑖

2

2𝑚𝑖
+ 𝑈(𝑞1, … , 𝑞𝑁)𝑁

𝑖 +
𝜁2𝑄

2
+ (3𝑁)

ln(𝑠)

𝛽
         (2.22) 

 In equation (2.19), the two first terms are the kinetic energy and potential 

energy previously defined for the classical Hamiltonian. Nosé and Hoover add the 

two next terms, and all together, they make up the Hamiltonian used in the Nosé-

Hoover thermostat. ζ is the thermodynamic friction coefficient and s is a time scale 

variable and is associated with the external heat bath reservoir. 

 The Nosé-Hover has the advantage of producing the canonical distribution as 

well as being deterministic and time-reversible for equilibrium systems [28]. 

Nevertheless, as a drawback, it can result in a non-ergodic system if becoming 

trapped in a subspace [28]. 

 Pressure control. For an isothermal-isobaric ensemble, it is imperative to use 

a barostat to control the pressure. Two examples of such barostats are the Nose-

Hoover barostat and the Berendsen barostat. 

 In short, both the Berendsen barostat and the Nose-Hoover barozate inspect 

the system pressure by adjusting the volume of the box. The pressure of the virial is 

calculated, and then the volume of the modeling block may fluctuate (probably to 

obtain a statistical ensemble pressure), so that the required pressure is reached.  
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 3. Visualization Tools and Graphics Programming 

 

3.1 Matlab - as a means of mathematical modeling 

 

 MATLAB is one of the oldest, thoroughly developed and time-tested systems 

for automation of mathematical calculations, built on an extended view and 

application of matrix operations. This is reflected in the name of the system - Matrix 

Laboratory - matrix laboratory. 

 The possibilities of MATLAB are very extensive, and the system often 

surpasses its competitors in speed of performing tasks. It is applicable for 

calculations in almost any field of science and technology. For example, it is very 

widely used in mathematical modeling of mechanical devices and systems, in 

particular, in dynamics, hydrodynamics, aerodynamics, acoustics, power 

engineering, etc. 

 MATLAB is a high-performance technical computing language that combines 

computing, visualization, and programming in a common to use environment where 

problems and solutions are demonstrated in a familiar mathematical notation. 

Typical attachments include: 

– Math and computing; 

– Development of a numerical algorithm; 

– Simulation and simulation; 

– Accurate analysis, research and visualization of results; 

– Scientific and engineering graphics of the system under study. 

 The name MATLAB stands for Matrix Lab. MatLab has the highest speed of 

numerical calculations. However, matrices are widely practiced not only in such 

mathematical calculations as solving problems of linear algebra and mathematical 

modeling, calculating static and dynamic systems and objects. They are the basis for 

the automatic preparation and solution of the equations of state of dynamic objects 

and systems. Actually, the versatility of the matrix calculator significantly increases 

the interest in the MatLab system, which encompasses the best achievements in the 

industry of quickly solving matrix problems. Therefore, MatLab has long gone 

beyond the boundaries of a specialized matrix system, becoming one of the most 

powerful universal integrated systems of computer mathematics [30]. 

 

3.2 Mathematical model of the statistical system 

 

 Setting the goal of understanding the qualitative properties of systems 

consisting of a large number of particles, we simplify the problem by assuming that 

the molecules are chemically inert and their movement is classical. In addition, we 

will assume that the interaction force of two molecules depends only on the distance 
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between them; therefore, the total potential energy U is determined by the sum of 

the energies of two partial interactions: 

 

       U=V (𝑟12) + V (𝑟13) +…+ V (𝑟23) +…=∑ 𝑉(𝑟𝑖𝑗)𝑁
𝑖<𝑗=1                           (3.1) 

 where V (𝑟𝑖𝑗) depends only on the absolute value of the distance 𝑟𝑖𝑗 between           

particles j and i. The pair interaction model adequately describes “simple” liquids, 

for example, liquid argon. 

 For electrically neutral atoms, it is theoretically possible, using the laws of 

quantum mechanics, to obtain an analytical expression for the function V (r). 

However, firstly, such a calculation turns out to be quite cumbersome, and secondly, 

for most tasks it is sufficient to use a simple phenomenological formula that takes 

into account that for small r the interaction force between the molecules �⃗�(𝑟) =

−∇⃗⃗⃗𝑈(𝑟) is the repulsive force, for large r - the force of displacement. Repulsion in 

accordance with quantum mechanical representations is due to the Pauli prohibition 

rule [6]. The weak attraction at large r is mainly due to the mutual polarization of 

each atom. The resulting force of attraction is called the Van der Waals force. Thus, 

when using the two-particle interaction model, the task of describing the behavior 

of the statistical system is reduced to choosing the type of potential V(𝑟) and solving 

the Cauchy problem for a system of differential equations: 

                      m
𝑑2

𝑑

𝑟𝑖⃗⃗⃗ ⃗

𝑡2
 = - �⃗⃗� ∑ 𝑉(𝑟𝑖𝑗⃗⃗ ⃗⃗ )𝑁

𝑖<𝑗=1                                               (3.2) 

 One of the most commonly used phenomenological formulas for describing 

the potential of intermolecular interaction is the Lennard-Johnson potential: 

                                         V(r) = 4𝑉0 [(
𝜎

𝑟
)

12
− (

𝜎

𝑟
)

6

]                                    (3.3) 

 

 where σ defines the “characteristic” length of the potential, and 𝑉0 is the depth 

of the potential well, which we will later choose as units of measure for distance 

�̃�  =  𝑟 ⁄ 𝜎) and energy ( �̃� ̃ = V (r) /𝑉0). As can be seen from (3), the potential V (r) 

reaches its minimum value - 𝑉0 at the point 𝑟𝑚𝑖𝑛 = 2
1

6 σ, V (r) = 0 at the point 𝑟0 = 

σ. 

 To select the variable T used to dimension the system of equations of motion 

(3.2), we expand the potential V (r) into a Taylor series near the potential 

minimum 𝑟𝑚𝑖𝑛 = 2
1

6 σ. Keeping the terms of the series proportional to the first and 

second derivatives and citing similar terms, we finally get: 
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                             𝑉(∆𝑟)

≈ −𝑉0 +
18 · 2

2
3

𝜎2
𝑉0∆𝑟2                                                          (3.4) 

where ∆r <<𝑟𝑚𝑖𝑛. 
 Comparing (3.4) with a known expression for the potential energy of a 

harmonic oscillator 

                                        E=
1

2
k𝑥2,                                                                   (3.5) 

we conclude that 

                                            𝜒=
2·18·2

2
3

𝜎2
𝑉0                                                                   

(3.6) 

is an analogue of the spring constant of a harmonic oscillator, i.e., a particle located 

in the Lennard-Jones potential, at small displacements from the minimum point will 

perform linear harmonic oscillations with a period T=2π√𝑚 𝜒⁄ . (For example, for 

liquid argon, for which 𝑉0 𝑘𝐵⁄ =119.8 К (𝑘𝐵is the Boltzmann constant). 

 𝜎 = 3.405 · 10−8  cm, mass m=6.69·10−23 g, T=1.14·10−11 s, next we will 

use T for dimensioning time (�̃�=𝑡 𝑇)⁄ . 

 Passing in (3.2) to the dimensionless variables  �̃� = 𝑟 𝜎⁄ ,  �̃� =  𝑉(𝑟) 𝑉0⁄  

�̃�=𝑡 𝑇⁄ , taking into account expression (3.6), we obtain the final expression for the 

dimensionless system of equations of motion 

                               
𝑑2

𝑑

𝑟�̃�

�̃�2
 =

 − 
2

7
3 𝜋2

3
 𝛻 ⃗⃗⃗̃⃗   ∑ 𝑉 ̃𝑁

𝑖<𝑗=1 (𝑟𝑖𝑗⃗⃗ ⃗̃⃗ ).                                               (3.7) 

 The system of differential equations (3.7), supplemented by the initial 

conditions 𝑟𝑖⃗⃗⃗̃⃗ (0), 𝑣𝑖⃗⃗⃗ ⃗̃(0)), is a mathematical model of the statistical system under 

consideration. 

 

 3.3 Numerical algorithm for solving the system of equations of motion 

 

 After compiling a mathematical model of a system consisting of a large 

number of interacting particles, one should choose a numerical solution algorithm, 

the accuracy of which depends directly on the correct choice. 

 Analysis of low-order accuracy algorithms, such as the Euler algorithm and 

the Euler-Cromer algorithm, shows that these algorithms cannot ensure the 

conservation of energy in the time intervals considered when modeling molecular 

dynamics. In these conditions, it is necessary to apply computational algorithms that 

have a higher order of accuracy, one of which is the Verlet algorithm. We illustrate 
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the essence of this algorithm, following [31], by the example of solving a system of 

equations of one-dimensional particle motion 

 𝑑𝑣

𝑑𝑡
= 𝑎,                                                                          (3.8) 

 
𝑑𝑥

𝑑𝑡
= 𝑣                                                                            (3.9) 

 

 We write the expansion of the dependences 𝑥𝑛+1  ≡ 𝑥(𝑡𝑛 + ∆𝑡) and 𝑣𝑛+1 ≡ 

≡ 𝑣(𝑡𝑛 + ∆𝑡) into a Taylor series 

             𝑥𝑛+1 =  𝑥𝑛 + �̇�(𝑡𝑛)∆𝑡 + 
1

2
𝑥(𝑡𝑛)(∆𝑡)2 + 𝑂[(∆𝑡)3],                     (3.10) 

 

                   𝑣𝑛+1 =  𝑣𝑛 + �̇�(𝑡𝑛)∆𝑡 + 𝑂[(∆𝑡)2]                                   (3.11) 

 

 Noting that �̇�(𝑡𝑛) = 𝑣𝑛,  x (𝑡𝑛) = �̇�(𝑡𝑛) = 𝑎𝑛will rewrite (3.10), (3.11) in the 

following form 

           𝑥𝑛+1 =  𝑥𝑛 +  𝑣𝑛∆𝑡 + 
1

2
𝑎𝑛(∆𝑡)2 + 𝑂[(∆𝑡)3],                                 (3.12) 

                            𝑣𝑛+1 =  𝑣𝑛 + 𝑎𝑛∆𝑡 + 𝑂[(∆𝑡)2].                                     (3.13) 

 

 By analogy with (3.12), (3.13) we write the decomposition in the Taylor series 

for 𝑥𝑛−1  ≡ 𝑥(𝑡𝑛 − ∆𝑡): 

              𝑥𝑛−1 =  𝑥𝑛 − 𝑣𝑛∆𝑡 + 
1

2
𝑎𝑛(∆𝑡)2 .                                                (3.14) 

 

Add (12) and (14), we get 

 

                 𝑥𝑛+1 + 𝑥𝑛−1 = 2𝑥𝑛 + 𝑎𝑛(∆𝑡)2 ,                                                   (3.15) 

 

from where 

            𝑥𝑛+1 = 2𝑥𝑛 − 𝑥𝑛−1 +  𝑎𝑛(∆𝑡)2.                                                     (3.16) 

 

 Subtracting (3.14) from (3.12), we finally get 

 

            𝑣𝑛 =  
𝑥𝑛+1−𝑥𝑛−1

2∆𝑡
                                                              (3.17) 

 

 The global error of the Verlet algorithm realized by formulas (3.16), (3.17) 

has the third order for the coordinate and the second order for the velocity. Note that 

the speed is not involved in the integration of the equations of motion; therefore, in 

the literature devoted to numerical methods, this algorithm is called an “implicit 

symmetric difference scheme”. The obvious disadvantage of the implicit difference 
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scheme is that it is not self-starting, so you have to use a different algorithm to get 

the first few points. 

This deficiency can be eliminated by adding and subtracting from both sides of 

equality (3.17) the value 𝑥𝑛 2⁄ : 

𝑥𝑛+1 =  𝑥𝑛 +
1

2
(𝑥𝑛+1 − 𝑥𝑛−1) −

1

2
𝑥𝑛−1 −

1

2
𝑥𝑛+1 + 𝑥𝑛 + 𝑎𝑛(∆𝑡)2 =  

          = 𝑥𝑛 + 𝑣𝑛∆𝑡 − 
1

2
(𝑥𝑛+1 − 2𝑥𝑛 + 𝑥𝑛−1) +  𝑎𝑛(∆𝑡)2                        (3.18) 

 

 From (3.16) we find 

         𝑎𝑛 =  
𝑥𝑛+1−2𝑥𝑛+𝑥𝑛−1

(∆𝑡)2                                                 (3.19) 

therefore (3.18) can be written as 

 

            𝑥𝑛+1 =  𝑥𝑛 + 𝑣𝑛∆𝑡 + 
1

2
𝑎𝑛(∆𝑡)2 .                                              (3.20)     

 In a similar way, we rewrite (3.17) for  𝑣𝑛+1 and (3.16) for 𝑥𝑛+2: 

 

             𝑣𝑛+1 =  
𝑥𝑛+2−𝑥𝑛

2∆𝑡
,                                               (3.21)      

     

𝑥𝑛+2 = 2𝑥𝑛+1 − 𝑥𝑛 + 𝑎𝑛+1(∆𝑡)2                                    (3.22) 

respectively. 

 Substituting (3.22) into (3.21), we obtain 

          𝑣𝑛+1 =  
𝑥𝑛+1+𝑣𝑛+1∆𝑡+

1

2
𝑎𝑛+1(∆𝑡)2−𝑥𝑛

∆𝑡
                                   (3.23) 

 

 Then, repeating the described procedure 𝑥𝑛+1  from (3.16) and substituting 

𝑥𝑛+1 in (3.23), after the obvious calculations, we finally learn 

         𝑣𝑛+1 =  𝑣𝑛 +
1

2
(𝑎𝑛+1 + 𝑎𝑛)∆𝑡.                                             (3.24) 

 The computational scheme defined by expressions (3.20), (3.24) is 

mathematically equivalent to the Verlet algorithm described above. This scheme, 

called the velocity form of the Verlet algorithm, is self-starting, and therefore does 

not require the use of any additional computational algorithms. A description of 

other computational schemes used to solve the equations of motion is given in [32]. 

 When using the MD method for modeling the behavior of gases and liquids, 

as a rule, it is assumed that the system in question is located in a certain cubic cell - 

the MD-cell. We assume that the MD-cell has a linear size L, its volume is 𝑉 = 𝐿3. 
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Using a cubic lattice generates six unwanted surfaces. Particles reflected from these 

surfaces will return inside the cell, so the edges of the cell will make a significant 

contribution to the macroscopic characteristics of the system, especially for systems 

with a small number of particles. To reduce the described effect, it is customary to 

introduce periodic boundary conditions [8] (figure 2.1), the mathematical 

formulation of which for any observable quantity A has the form: 

 

    𝐴(𝑟)=𝐴(𝑟 + �⃗⃗�𝐿),                                                       (3.25) 

 

 where �⃗⃗� =  (𝑛1, 𝑛2,𝑛3), а 𝑛1𝑛2𝑛3-indices of integers. 

 
Figure 3.1 – An example of periodic boundary conditions in the two-dimensional 

case. The rule of the nearest particle means that the length of the vector indicated 

by the bidirectional arrow determines the distance between particles 1 and 2 

 

 This algorithm has the following computational implementation: when a 

particle crosses the face of the main cell, it returns to the cell through the opposite 

face at the same speed. By introducing periodic boundary conditions, the influence 

of faces is eliminated and a quasi-infinite volume is introduced to more accurately 

describe the macroscopic system, i.e. The MD cell is “embedded” in the area. Each 

component of the translation radius vector is a number between zero and L. For the 

i particle located at the point with the radius vector 𝑟𝑖, there are particle maps at 

points with radii vectors 𝑟 + �⃗⃗�𝐿, where  �⃗⃗� is an integer vector. 

 For the selected boundary conditions, the potential energy takes the following 

form 

     𝑉(𝑟1, … , 𝑟𝑁) =  ∑ 𝑉(𝑟𝑖𝑗) + ∑ ∑ (|𝑟−𝑖 − 𝑟−𝑗 + �⃗⃗�𝐿|)𝑖<𝑗𝑛𝑖<𝑗                     (3.26) 

 In order to avoid calculating the infinite sum in (3.26), the following rule is 

adopted [8]: distance |𝑟𝑖𝑗| between particles located at points with radius 

vectors 𝑟𝑖 , 𝑟𝑗 , respectively, is defined as |𝑟𝑖𝑗| = 𝑚𝑖𝑛(|𝑟−𝑖 + 𝑟−𝑗 ± �⃗⃗�𝐿|) over all �⃗⃗�. 
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This rule means that a particle located in the basic cell interacts with each of the N-

1 particles in the basic cell or with its closest mappings (figure 2.1). It is important 

to understand that the use of this rule leads to the "cutting off" of the potential at 

distances 

𝑟𝑐 >
𝐿

2
                                                                          (3.27) 

 This leads to a loss of the background contribution of distant particles, 

therefore, in order to eliminate the effect of the finiteness of the system, the values 

of L should be chosen large enough so that the forces acting at distances of large L⁄2 

are negligible. Note that a more correct catch is to take into account the interaction 

of each particle with its display. References to original works devoted to this 

approach and the description of computational algorithms that implement it are 

given in [32]. 

 We finally formulate the algorithm of the MD method: 

– Set the number of particles of the system N; 

– Set the initial configuration of the system (set of coordinates  𝑟𝑖(0) and speeds 

�⃗�𝑖(0) particles); 

– Set h - integration step of the system of differential equations (3.7); 

– Set Nh is the number of steps in which the solutions of the system of 

differential equations (3.7) are calculated; 

– Calculate in accordance with (3.20), (3.24) and taking into account the 

periodic boundary conditions, the values of the coordinates 𝑟𝑖 and speeds �⃗�𝑖, 

i=0,1,…N at successive times 𝑡𝑛, 𝑖 = 0,1, … 𝑁ℎ. 
 

3.3 Modeling a system consisting of a large number of particles using 

the molecular dynamics method 

 

 The statistical system under consideration is deterministic, since the Cauchy 

problem of a system of linear differential equations with constant coefficients is 

solved to describe its behavior. At the same time, the obtained solutions directly 

depend on the initial conditions 𝑟𝑖(0), �⃗�𝑖(0) (initial system configuration). Note that 

their correct choice is far from a simple task (for example, it is not at all obvious in 

advance how to choose the initial configuration so that the system under study 

behaves like a fluid with a given temperature.), Therefore, we first discuss the 

features of the evolution of a statistical system from arbitrary initial configurations. 

One of the possible options for specifying the initial conditions is the placement of 

particles in nodes of a certain rectangular grid (the size of which, obviously, must be 

less than the size of the MD cell) and the assignment of their velocity vectors 

randomly, for example, using a random number generator with a uniform 

distribution law. This approach is used below in the problem of modeling a statistical 

system using the MD method. 
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 To solve this problem, it is convenient to first create m-files containing 

descriptions: 

– A function that returns the initial system configuration; 

– A function that returns the instantaneous acceleration of each particle of the 

system and the instantaneous value of the potential energy; 

– A function that returns the values of the coordinates, the components of the 

velocity and acceleration along the corresponding coordinate axes; 

– A function that returns a composite array containing the values of the 

coordinates, the projections of the velocities and accelerations on the corresponding 

coordinate axes in the nodes of the time grid. 

3.5 Method of implementation of md modeling and calculation of 

thermodynamic parameters 

  
Figure 3.2 – Initial configuration of the 

statistical system 

 

Figure 3.3 – Configuration of the 

statistical system at time t = 0.05 
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Figure 3.4 – Configuration of the 

statistical system at time t = 0.5 

Figure 3.5 – Configuration of the 

statistical system at time t = 1.0 

  
Figure 3.6 – Dependence of the number 

of particles in the left half of the box on 

time (Nleft = Nleft (t)) 

Figure 3.7 – Dependence of the 

kinetic energy per particle on time 

(Ek = Ek (t)) 
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Figure 3.8 – Dependence of potential 

energy per particle on time (Ep = Ep (t)) 

Figure 3.9 – Dependence of the total 

energy per particle on time (E = E (t)) 

 
Figure 3.10 – Dependence of instantaneous pressure values on time 

 Analysis of dependencies presented in figure 3.6-3.10 shows that over time 

the system tends to an equilibrium state (relaxation process), in which the number 

of particles in the left and right halves of the MD cell and the total energy of the 

system remain approximately the same. (Note that since the values of the initial 

velocity are set using a random number generator, these dependencies obtained 

during the document recalculation will always differ from the dependencies shown 

in figure 3.6-3.10, but they should behave in a qualitative manner in a similar way).  
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CONCLUSION 

 

 This paper provides basic information about the molecular dynamics method; 

it is shown that its use even for a two-dimensional system with a few particles makes 

it possible to identify at a qualitative level a number of basic properties of statistical 

systems, to introduce some concepts of kinetic transport theory in liquids and gases. 

  MD is a fairly convenient and versatile method for conducting numerical 

experiments with molecular systems of various nature. However, it should be borne 

in mind that using the results of MD computations to refine the physical picture and 

determine the dynamic parameters is not a simple matter. Let us briefly 

list some main problems that arise here: 

– The existing force fields are not universal and are intended only types of 

molecular structures in a certain range of external conditions (temperature and 

pressure); 

– The results of the calculation of the trajectories depend on the numerical 

procedure used to solve the system of Newton's equations. Especially it concerns the 

choice of the thermostat type (as well as the barostat, if the calculations are 

performed under the condition of constant pressure); 

– The requirement of ergodicity (or quasi-ergodicity for large systems) 

requires a special selection of suitable conditions for MD modeling.  

 The choice of these conditions largely depends on the surface topology of the 

potential energy levels of the system under consideration. In connection with the 

above, we note that the formal use of MD procedures most likely will not provide 

valuable information about the physical properties of the system. Here it is very 

important to compare the results of MD experiments carried out at different values 

of parameters and to single out those parameters on which the dynamic properties 

most significantly depend.  

 At the same time, physical intuition and understanding of the general physical 

picture for the phenomena under consideration are of great importance. To obtain 

quantitative results, it is required to simulate three-dimensional systems, which 

inevitably leads to an increase in the counting time. The greatest time costs fall on 

the formation of an equilibrium state and the calculation of forces and energy. To 

reduce the time spent using different approaches.  
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